KDE Plot
Delivery Time Distribution
KDE comparing delivery times across shipping methods.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(107)
express = np.random.gamma(2, 0.5, 400)
standard = np.random.gamma(3, 1.5, 500)
economy = np.random.gamma(4, 2, 300)
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
x = np.linspace(0, 20, 500)
methods = [
(express, 'Express', '#27F5B0'),
(standard, 'Standard', '#F5B027'),
(economy, 'Economy', '#F5276C'),
]
for data, label, color in methods:
kde = stats.gaussian_kde(data)
y = kde(x)
mean_val = np.mean(data)
ax.fill_between(x, y, alpha=0.3, color=color)
ax.plot(x, y, color=color, linewidth=2.5, label=label + ' (' + str(round(mean_val, 1)) + ' days)')
ax.set_xlabel('Delivery Time (days)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Delivery Time by Shipping Method', fontsize=16, color='#1f2937', fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(0, 20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕