Raincloud Plot

Diet Type BMI Distribution Raincloud

Comparing BMI distributions across different dietary patterns.

Output
Diet Type BMI Distribution Raincloud
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

np.random.seed(1212)

# BMI values
standard = np.random.normal(27.5, 4.5, 100)
mediterranean = np.random.normal(24.2, 3.2, 90)
keto = np.random.normal(25.8, 3.8, 85)
vegan = np.random.normal(23.5, 2.8, 75)

standard = np.clip(standard, 18, 40)
mediterranean = np.clip(mediterranean, 18, 35)
keto = np.clip(keto, 18, 38)
vegan = np.clip(vegan, 17, 32)

F_stat, p_value = stats.f_oneway(standard, mediterranean, keto, vegan)

BG_COLOR = "#ffffff"
COLOR_SCALE = ["#9ca3af", "#6CF527", "#F5B027", "#27D3F5"]

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

y_data = [standard, mediterranean, keto, vegan]
positions = [0, 1, 2, 3]
labels = ["Standard\nWestern", "Mediterranean", "Ketogenic", "Vegan"]

for h in [20, 25, 30, 35]:
    ax.axhline(h, color='#e5e7eb', ls=(0, (5, 5)), alpha=0.8, zorder=0)

# BMI categories
ax.axhspan(18.5, 25, alpha=0.08, color='#22c55e')
ax.axhspan(25, 30, alpha=0.05, color='#fbbf24')
ax.axhspan(30, 42, alpha=0.05, color='#ef4444')
ax.text(3.55, 22, "Normal", color='#22c55e', fontsize=8, va='center')
ax.text(3.55, 27.5, "Overweight", color='#fbbf24', fontsize=8, va='center')
ax.text(3.55, 35, "Obese", color='#ef4444', fontsize=8, va='center')

violins = ax.violinplot(y_data, positions=positions, widths=0.5, 
                         bw_method="silverman", showmeans=False, 
                         showmedians=False, showextrema=False)
for pc in violins["bodies"]:
    pc.set_facecolor("none")
    pc.set_edgecolor("#374151")
    pc.set_linewidth(1.8)

bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
                medianprops=dict(linewidth=3, color='#1f2937'),
                whiskerprops=dict(linewidth=2, color='#9ca3af'),
                boxprops=dict(linewidth=2, color='#9ca3af'))

for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
    x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
    ax.scatter(x_jitter, y, s=50, color=color, alpha=0.5, zorder=2)

means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
    ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
    ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color="#374151", zorder=3, lw=1.5)
    ax.text(i + 0.3, mean, f"μ={mean:.1f}", fontsize=10, va="center", color='#1f2937',
            bbox=dict(facecolor='white', edgecolor=color, boxstyle="round,pad=0.15", lw=2))

# Best diet annotation
ax.annotate('Lowest BMI', xy=(3, vegan.mean()), xytext=(3.3, 20),
            fontsize=10, color='#22c55e', ha='left',
            arrowprops=dict(arrowstyle='->', color='#22c55e', lw=1.5))

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_color('#d1d5db')
ax.spines["bottom"].set_color('#d1d5db')
ax.tick_params(colors='#374151', length=0)

xlabels_full = [f"{l}\n(n={len(y_data[i])})" for i, l in enumerate(labels)]
ax.set_xticks(positions)
ax.set_xticklabels(xlabels_full, size=10, color='#1f2937')
ax.set_ylabel("BMI (kg/m²)", size=14, color='#1f2937', fontweight='bold')

ax.set_title("BMI Distribution by Diet Type", fontsize=14, color="white", fontweight="bold", pad=20)


ax.set_ylim(15, 42)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support