Linear Regression Plot
Distance vs Taxi Fare
Transportation pricing model analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(412)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
n = 80
distance = np.random.uniform(0.5, 20, n)
fare = 3.5 + 2.2 * distance + np.random.normal(0, 3, n)
df = pd.DataFrame({'Distance (miles)': distance, 'Fare ($)': fare})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Distance (miles)',
y='Fare ($)',
scatter_kws={'color': '#F5B027', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#4927F5', 'linewidth': 2.5},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#4927F5')
collection.set_alpha(0.15)
corr = np.corrcoef(distance, fare)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#4927F5', fontweight='bold', va='top',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))
slope = np.polyfit(distance, fare, 1)[0]
ax.text(0.05, 0.85, '$%.2f/mile' % slope, transform=ax.transAxes, fontsize=11,
color='#F5B027', va='top')
ax.set_xlabel('Distance (miles)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Fare ($)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Taxi Distance vs Fare', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕