Linear Regression Plot

Distance vs Taxi Fare

Transportation pricing model analysis

Output
Distance vs Taxi Fare
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(412)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'

n = 80
distance = np.random.uniform(0.5, 20, n)
fare = 3.5 + 2.2 * distance + np.random.normal(0, 3, n)

df = pd.DataFrame({'Distance (miles)': distance, 'Fare ($)': fare})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Distance (miles)',
    y='Fare ($)',
    scatter_kws={'color': '#F5B027', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#4927F5', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#4927F5')
    collection.set_alpha(0.15)

corr = np.corrcoef(distance, fare)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#4927F5', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))

slope = np.polyfit(distance, fare, 1)[0]
ax.text(0.05, 0.85, '$%.2f/mile' % slope, transform=ax.transAxes, fontsize=11,
        color='#F5B027', va='top')

ax.set_xlabel('Distance (miles)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Fare ($)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Taxi Distance vs Fare', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#e5e7eb')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support