Word Cloud
Electric Vehicle Tech
EV and sustainable transportation terms
Output
Python
import matplotlib.pyplot as plt
from wordcloud import WordCloud
text = """Electric Vehicle EV Tesla Rivian Lucid Polestar BMW iX Mercedes EQS
Battery Lithium Ion Solid State Range Anxiety Charging Station Supercharger
Autopilot Full Self Driving FSD ADAS Lane Keeping Adaptive Cruise
Regenerative Braking Torque Instant Acceleration Performance Efficiency
Solar Roof Powerwall Energy Storage Grid V2G Vehicle to Grid Bidirectional
Autonomous Robotaxi Waymo Cruise Zoox LiDAR Radar Camera Sensor Fusion
Gigafactory Production Scale Manufacturing Supply Chain Semiconductor"""
def ev_gradient(word, font_size, position, orientation, random_state=None, **kwargs):
colors = ['#27D3F5', '#6CF527', '#22c55e', '#10b981', '#06b6d4']
return colors[hash(word) % len(colors)]
wordcloud = WordCloud(
width=1200, height=600,
background_color='#0a0a0f',
color_func=ev_gradient,
max_words=80,
max_font_size=130,
min_font_size=10,
relative_scaling=0.5
).generate(text)
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#0a0a0f')
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
plt.tight_layout(pad=0)
plt.show()
Library
Matplotlib
Category
Text Visualization
More Word Cloud examples
☕