Calendar Heatmap

Email Activity Calendar

Daily email volume tracked with neon blue gradient showing inbox activity.

Output
Email Activity Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(122)

days = 365
emails = np.random.exponential(25, days).astype(int)
emails = np.clip(emails, 0, 100)
for i in range(days):
    if i % 7 >= 5:
        emails[i] = emails[i] // 3

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(emails):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# CLAUDE.md Neon Blue palette
colors_neon = ['#ffffff', '#e0edfc', '#78b4f9', '#276CF5']
cmap = LinearSegmentedColormap.from_list('neon_blue', colors_neon, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=100)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#374151')

ax.set_title('Email Activity - Messages Per Day', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)

ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db') 
                   for c, l in zip(colors_neon, ['0-25', '26-50', '51-75', '76+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=4, 
          fontsize=8, facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151', title='Emails',
          title_fontsize=9)

total = int(np.sum(emails))
ax.annotate(f'{total:,} emails processed', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#276CF5', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support