Linear Regression Plot

Employee Count vs Revenue Per Employee

Company scale efficiency analysis

Output
Employee Count vs Revenue Per Employee
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(420)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'

n = 60
employees = np.random.uniform(10, 500, n)
rev_per_emp = 300 - 0.3 * employees + np.random.normal(0, 40, n)
rev_per_emp = np.clip(rev_per_emp, 50, 400)

df = pd.DataFrame({'Employees': employees, 'Revenue/Employee ($K)': rev_per_emp})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Employees',
    y='Revenue/Employee ($K)',
    scatter_kws={'color': '#F5B027', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#5314E6', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#5314E6')
    collection.set_alpha(0.15)

ax.axhline(200, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(480, 205, 'Target', color='#22c55e', fontsize=9, ha='right')

corr = np.corrcoef(employees, rev_per_emp)[0, 1]
ax.text(0.05, 0.05, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#5314E6', fontweight='bold', va='bottom',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))

ax.set_xlabel('Number of Employees', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Revenue per Employee ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Company Size vs Efficiency', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#e5e7eb')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support