Linear Regression Plot
Employee Count vs Revenue Per Employee
Company scale efficiency analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(420)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
n = 60
employees = np.random.uniform(10, 500, n)
rev_per_emp = 300 - 0.3 * employees + np.random.normal(0, 40, n)
rev_per_emp = np.clip(rev_per_emp, 50, 400)
df = pd.DataFrame({'Employees': employees, 'Revenue/Employee ($K)': rev_per_emp})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Employees',
y='Revenue/Employee ($K)',
scatter_kws={'color': '#F5B027', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#5314E6', 'linewidth': 2.5},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#5314E6')
collection.set_alpha(0.15)
ax.axhline(200, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(480, 205, 'Target', color='#22c55e', fontsize=9, ha='right')
corr = np.corrcoef(employees, rev_per_emp)[0, 1]
ax.text(0.05, 0.05, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#5314E6', fontweight='bold', va='bottom',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))
ax.set_xlabel('Number of Employees', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Revenue per Employee ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Company Size vs Efficiency', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕