Stream Graph

Energy Consumption by Sector Stream

Stream graph showing energy consumption patterns across industrial, residential, commercial, and transport sectors.

Output
Energy Consumption by Sector Stream
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {
    'layers': ['#EF4444', '#F59E0B', '#10B981', '#3B82F6', '#8B5CF6'],
    'background': '#ffffff',
    'text': '#1f2937',
    'grid': '#e5e7eb',
}

np.random.seed(456)
hours = np.arange(0, 24)

# Energy by sector (hourly pattern)
industrial = 40 + 10 * (1 - np.abs(hours - 14) / 14) + np.random.normal(0, 2, 24)
residential = 20 + 15 * np.exp(-((hours - 19)**2) / 10) + 10 * np.exp(-((hours - 7)**2) / 5) + np.random.normal(0, 2, 24)
commercial = 25 * np.exp(-((hours - 13)**2) / 20) + np.random.normal(0, 2, 24)
transport = 15 + 10 * np.exp(-((hours - 8)**2) / 5) + 8 * np.exp(-((hours - 17)**2) / 5) + np.random.normal(0, 1, 24)
agriculture = 8 + 5 * np.sin(hours * np.pi / 12) + np.random.normal(0, 1, 24)

data = [np.clip(d, 1, None) for d in [industrial, residential, commercial, transport, agriculture]]

fig, ax = plt.subplots(figsize=(14, 6), facecolor=COLORS['background'])
ax.set_facecolor(COLORS['background'])

ax.stackplot(hours, *data, colors=COLORS['layers'], alpha=0.85, baseline='sym',
             labels=['Industrial', 'Residential', 'Commercial', 'Transport', 'Agriculture'])

ax.axhline(0, color=COLORS['grid'], linewidth=0.5)
ax.set_xlim(0, 23)
ax.set_xticks([0, 6, 12, 18, 24])
ax.set_xticklabels(['00:00', '06:00', '12:00', '18:00', '24:00'])

ax.set_title('Daily Energy Consumption by Sector', color=COLORS['text'], fontsize=14, fontweight='bold', pad=15)
ax.set_xlabel('Hour of Day', color=COLORS['text'], fontsize=11)
ax.set_ylabel('Energy (GWh)', color=COLORS['text'], fontsize=11)

ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12), frameon=False, fontsize=9, ncol=5)

for spine in ax.spines.values():
    spine.set_color(COLORS['grid'])
ax.tick_params(colors=COLORS['text'], labelsize=9)

plt.tight_layout()
plt.subplots_adjust(bottom=0.18)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support