Calendar Heatmap

Energy Consumption Calendar

Daily household energy usage showing consumption patterns.

Output
Energy Consumption Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(204)

days = 365
# Simulate energy - higher in winter (heating) and summer (AC)
base_energy = 40 + 25 * np.abs(np.cos(2 * np.pi * (np.arange(days) - 15) / 365))
energy = base_energy + np.random.normal(0, 10, days)
# Weekends higher usage
for i in range(days):
    if i % 7 >= 5:
        energy[i] *= 1.2
energy = np.clip(energy, 10, 100)

energy_levels = np.digitize(energy, bins=[0, 25, 40, 55, 70, 85]) - 1

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(energy_levels):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# Temperature palette
colors = ['#1e3a8a', '#3b82f6', '#22d3ee', '#fbbf24', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('energy', colors, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#e2e8f0')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#e2e8f0')

ax.set_title('Energy Consumption - Daily kWh Usage', fontsize=16, color='white', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#1e293b', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#1e293b', linewidth=0.5)

ax.tick_params(colors='#e2e8f0', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#334155') 
                   for c, l in zip(colors, ['<25kWh', '25-40', '40-55', '55-70', '70-85', '>85kWh'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6, 
          fontsize=8, facecolor='#1e293b', edgecolor='#334155', labelcolor='white')

total = np.sum(energy)
ax.annotate(f'Total: {total:,.0f} kWh this year', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#fbbf24', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support