Heatmap

Energy Consumption Heatmap

Dark theme heatmap showing power usage by zone

Output
Energy Consumption Heatmap
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch

fig, ax = plt.subplots(figsize=(14, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

np.random.seed(42)
zones = ['Building A', 'Building B', 'Building C', 'Data Center', 'Factory']
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
energy = np.random.gamma(5, 200, (len(zones), len(months)))
energy[3, :] *= 3

colors = ['#1e293b', '#7c3aed', '#a855f7', '#fbbf24', '#fef3c7']
cmap = LinearSegmentedColormap.from_list('modern', colors, N=256)

cell_width = 0.88
cell_height = 0.82
for i in range(len(zones)):
    for j in range(len(months)):
        val = energy[i, j]
        color = cmap(val / energy.max())
        rect = FancyBboxPatch((j - cell_width/2, i - cell_height/2), 
                               cell_width, cell_height,
                               boxstyle="round,pad=0.02,rounding_size=0.12",
                               facecolor=color, edgecolor='#e2e8f0', linewidth=1.5)
        ax.add_patch(rect)
        

ax.set_xlim(-0.5, len(months) - 0.5)
ax.set_ylim(-0.5, len(zones) - 0.5)
ax.set_aspect('equal')
ax.invert_yaxis()

ax.set_xticks(range(len(months)))
ax.set_yticks(range(len(zones)))
ax.set_xticklabels(months, color='#64748b', fontsize=9, fontweight='500')
ax.set_yticklabels(zones, color='#1e293b', fontsize=11, fontweight='500')

sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=energy.max()))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, aspect=30, pad=0.02)
cbar.set_label('Energy (MWh)', color='#1e293b', fontsize=11, fontweight='500')
cbar.ax.yaxis.set_tick_params(color='#64748b')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')
cbar.outline.set_edgecolor('#e2e8f0')

for spine in ax.spines.values():
    spine.set_visible(False)

ax.set_title('Monthly Energy Consumption by Zone', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
ax.tick_params(length=0)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support