Linear Regression Plot
Engine Size vs Fuel Economy
Automotive efficiency analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(409)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
n = 80
engine = np.random.uniform(1.0, 6.0, n)
mpg = 45 - 5 * engine + np.random.normal(0, 4, n)
df = pd.DataFrame({'Engine Size (L)': engine, 'MPG': mpg})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Engine Size (L)',
y='MPG',
scatter_kws={'color': '#F54927', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#6CF527', 'linewidth': 2.5},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#6CF527')
collection.set_alpha(0.15)
corr = np.corrcoef(engine, mpg)[0, 1]
ax.text(0.95, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#6CF527', fontweight='bold', va='top', ha='right',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))
ax.set_xlabel('Engine Size (Liters)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Fuel Economy (MPG)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Engine Size vs Fuel Economy', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕