Treemap
ETL Pipeline Data Volume
Dark-themed treemap visualizing data volume processed through different ETL pipeline stages and data sources.
Output
Python
import matplotlib.pyplot as plt
import squarify
import numpy as np
# Data volume (in TB/day)
labels = ['Kafka Streams', 'Batch Files', 'API Ingestion', 'CDC Events',
'Log Aggregation', 'IoT Sensors', 'Web Scraping', 'Third-party APIs']
sizes = [45, 28, 18, 32, 22, 38, 8, 12]
total = sum(sizes)
# CLAUDE.md colors
colors = ['#27D3F5', '#F5276C', '#6CF527', '#5314E6', '#F5B027',
'#276CF5', '#F54927', '#27F5B0']
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
pct = [s/total*100 for s in sizes]
squarify.plot(sizes=sizes,
label=[f'{l}\n{s}TB ({p:.1f}%)' for l, s, p in zip(labels, sizes, pct)],
color=colors, alpha=0.85, ax=ax,
text_kwargs={'fontsize': 10, 'color': 'white', 'fontweight': 'bold'})
ax.axis('off')
ax.set_title(f'Daily ETL Data Volume - {total}TB/day',
fontsize=18, color='#f8fafc', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Part-to-Whole
☕