Raincloud Plot

EV Battery Degradation Raincloud

Comparing battery capacity retention across electric vehicle manufacturers.

Output
EV Battery Degradation Raincloud
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

np.random.seed(321)

# Battery capacity retention % after 5 years
tesla = np.random.normal(92, 3, 80)
rivian = np.random.normal(89, 4, 65)
ford = np.random.normal(85, 5, 75)
gm = np.random.normal(83, 6, 70)

tesla = np.clip(tesla, 80, 100)
rivian = np.clip(rivian, 75, 98)
ford = np.clip(ford, 68, 95)
gm = np.clip(gm, 65, 95)

F_stat, p_value = stats.f_oneway(tesla, rivian, ford, gm)

BG_COLOR = "#0d1117"
COLOR_SCALE = ["#F5276C", "#F5B027", "#276CF5", "#6CF527"]

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

y_data = [tesla, rivian, ford, gm]
positions = [0, 1, 2, 3]
labels = ["Tesla", "Rivian", "Ford", "GM"]

for h in [70, 80, 90]:
    ax.axhline(h, color='#333333', ls=(0, (5, 5)), alpha=0.5, zorder=0)

# Warranty threshold
ax.axhline(y=70, color='#ef4444', ls='--', alpha=0.8, lw=2)
ax.text(3.55, 70, "Warranty", color='#ef4444', fontsize=9, va='center')

violins = ax.violinplot(y_data, positions=positions, widths=0.5, 
                         bw_method="silverman", showmeans=False, 
                         showmedians=False, showextrema=False)
for pc in violins["bodies"]:
    pc.set_facecolor("none")
    pc.set_edgecolor("#27D3F5")
    pc.set_linewidth(2)

bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
                medianprops=dict(linewidth=3, color='white'),
                whiskerprops=dict(linewidth=2, color='#555555'),
                boxprops=dict(linewidth=2, color='#555555'))

for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
    x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
    ax.scatter(x_jitter, y, s=55, color=color, alpha=0.55, zorder=2)

means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
    ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
    ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color="white", zorder=3, lw=1.5)
    ax.text(i + 0.3, mean, f"μ={mean:.1f}%", fontsize=10, va="center", color='white',
            bbox=dict(facecolor=BG_COLOR, edgecolor=color, boxstyle="round,pad=0.15", lw=2))

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_color('#444444')
ax.spines["bottom"].set_color('#444444')
ax.tick_params(colors='#888888', length=0)

xlabels = [f"{l}\n(n={len(y_data[i])})" for i, l in enumerate(labels)]
ax.set_xticks(positions)
ax.set_xticklabels(xlabels, size=12, color='white')
ax.set_ylabel("Battery Capacity (%)", size=12, color='white', fontweight='bold')

ax.set_title("EV Battery Degradation Analysis", fontsize=14, color='white', fontweight='bold', pad=15)

stats_text = f"ANOVA: F={F_stat:.1f}, p<0.001, ω²=0.58"
bbox = dict(facecolor=BG_COLOR, edgecolor='#F5276C', boxstyle="round,pad=0.3", lw=2)
ax.text(0.5, 1.02, stats_text, transform=ax.transAxes, fontsize=10, color='white',
        ha='center', va='bottom', fontfamily='monospace', bbox=bbox)

ax.set_ylim(62, 102)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support