Ridgeline Plot
EV Driving Range by Model
Electric vehicle performance with eco-tech theme
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(666)
models = ['Model S', 'Model 3', 'ID.4', 'Ioniq 6', 'EV6', 'Mach-E']
colors = ['#F5276C', '#27D3F5', '#6CF527', '#F5B027', '#4927F5', '#27F5B0']
data = {
'Model S': np.random.normal(405, 25, 500),
'Model 3': np.random.normal(358, 30, 500),
'ID.4': np.random.normal(275, 35, 500),
'Ioniq 6': np.random.normal(361, 28, 500),
'EV6': np.random.normal(310, 32, 500),
'Mach-E': np.random.normal(312, 35, 500)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
overlap = 1.6
x_range = np.linspace(150, 500, 300)
for i, (model, range_mi) in enumerate(data.items()):
kde = stats.gaussian_kde(range_mi, bw_method=0.3)
y = kde(x_range) * 3.5
baseline = i * overlap
for w, a in [(12, 0.1), (8, 0.15), (5, 0.3), (2.5, 0.5)]:
ax.plot(x_range, y + baseline, color=colors[i], linewidth=w, alpha=a)
ax.fill_between(x_range, baseline, y + baseline, alpha=0.5, color=colors[i])
ax.plot(x_range, y + baseline, color='white', linewidth=1.2, alpha=0.9)
ax.text(145, baseline + 0.12, model, fontsize=10, color=colors[i],
ha='right', va='bottom', fontweight='600')
ax.set_xlim(100, 500)
ax.set_ylim(-0.3, len(models) * overlap + 1.8)
ax.set_xlabel('Range (miles)', fontsize=12, color='#666666', fontweight='500')
ax.set_title('EV Driving Range by Model', fontsize=16, color='white', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#555555', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
for spine in ax.spines.values():
spine.set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕