Raincloud Plot
Exam Scores by Study Method
Student exam performance across different study methodologies
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
np.random.seed(18)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'
COLOR_SCALE = ['#F5276C', '#6CF527', '#27D3F5', '#F5B027']
# Data: Exam scores (0-100) by study method
traditional = np.random.normal(72, 12, 50)
spaced_rep = np.random.normal(82, 8, 48)
active_recall = np.random.normal(85, 7, 52)
passive_review = np.random.normal(68, 14, 45)
y_data = [traditional, spaced_rep, active_recall, passive_review]
labels = ['Traditional', 'Spaced Rep.', 'Active Recall', 'Passive']
F_stat, p_value = stats.f_oneway(*y_data)
positions = list(range(len(y_data)))
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
violins = ax.violinplot(y_data, positions=positions, widths=0.5,
bw_method="silverman", showmeans=False,
showmedians=False, showextrema=False)
for pc in violins["bodies"]:
pc.set_facecolor("none")
pc.set_edgecolor(TEXT_COLOR)
pc.set_linewidth(1.8)
bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
medianprops=dict(linewidth=3, color='#C82909'),
whiskerprops=dict(linewidth=2, color='#9ca3af'),
boxprops=dict(linewidth=2, color='#9ca3af'))
for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
ax.scatter(x_jitter, y, s=50, color=color, alpha=0.6, zorder=2, edgecolors='white', linewidths=0.5)
means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color=TEXT_COLOR, zorder=3, lw=1.5)
ax.text(i + 0.3, mean, f"μ={mean:.0f}%", fontsize=10, va="center", color=TEXT_COLOR,
bbox=dict(facecolor=BG_COLOR, edgecolor=color, boxstyle="round,pad=0.15", lw=2))
eta_sq = 0.31
stats_text = f"ANOVA: F={F_stat:.1f}, p<0.001, η²={eta_sq:.2f}"
bbox = dict(facecolor=BG_COLOR, edgecolor='#5314E6', boxstyle="round,pad=0.3", lw=2)
ax.text(0.5, 1.02, stats_text, transform=ax.transAxes, fontsize=11, color=TEXT_COLOR,
ha='center', va='bottom', fontfamily='monospace', bbox=bbox)
ax.set_ylabel('Exam Score (%)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Exam Scores by Study Method', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=30)
ax.set_xticks(positions)
ax.set_xticklabels(labels)
ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.set_axisbelow(True)
ax.set_ylim(30, 110)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Raincloud Plot examples
☕