Ridgeline Plot
Exam Scores by Subject
Score distributions across different academic subjects
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
subjects = ['Mathematics', 'Physics', 'Chemistry', 'Biology', 'English', 'History']
score_means = [72, 68, 75, 78, 82, 76]
score_stds = [12, 15, 10, 11, 8, 13]
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
colors = ['#F5276C', '#F54927', '#F5B027', '#6CF527', '#27D3F5', '#4927F5']
x = np.linspace(30, 100, 200)
overlap = 2.2
for i, (subject, mean, std, color) in enumerate(zip(subjects, score_means, score_stds, colors)):
data = np.random.normal(mean, std, 1000)
data = np.clip(data, 0, 100)
kde = stats.gaussian_kde(data)
y = kde(x) * 8
y_offset = i * overlap
ax.fill_between(x, y_offset, y + y_offset, alpha=0.85, color=color, edgecolor='white', linewidth=0.8)
ax.text(27, y_offset + 0.3, subject, fontsize=10, color='white', va='center', ha='right', fontweight='500')
ax.set_xlim(10, 100)
ax.set_ylim(-0.5, len(subjects) * overlap + 2)
ax.set_xlabel('Score', color='white', fontsize=11, fontweight='500')
ax.set_title('Exam Score Distribution by Subject', color='white', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#888888', labelsize=9)
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
ax.spines['bottom'].set_visible(True)
ax.spines['bottom'].set_color('#333333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕