Linear Regression Plot
Experience Years vs Salary
Career progression and compensation analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(406)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
n = 85
experience = np.random.uniform(0, 25, n)
salary = 45 + 5.5 * experience + np.random.normal(0, 15, n)
df = pd.DataFrame({'Experience (years)': experience, 'Salary ($K)': salary})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Experience (years)',
y='Salary ($K)',
scatter_kws={'color': '#6CF527', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#5314E6', 'linewidth': 2.5},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#5314E6')
collection.set_alpha(0.15)
corr = np.corrcoef(experience, salary)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#5314E6', fontweight='bold', va='top',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))
slope = np.polyfit(experience, salary, 1)[0]
ax.text(0.05, 0.85, '+$%.1fK/year' % slope, transform=ax.transAxes, fontsize=11,
color='#6CF527', va='top')
ax.set_xlabel('Years of Experience', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Annual Salary ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Experience vs Salary', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕