Linear Regression Plot

Experience Years vs Salary

Career progression and compensation analysis

Output
Experience Years vs Salary
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(406)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

n = 85
experience = np.random.uniform(0, 25, n)
salary = 45 + 5.5 * experience + np.random.normal(0, 15, n)

df = pd.DataFrame({'Experience (years)': experience, 'Salary ($K)': salary})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Experience (years)',
    y='Salary ($K)',
    scatter_kws={'color': '#6CF527', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#5314E6', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#5314E6')
    collection.set_alpha(0.15)

corr = np.corrcoef(experience, salary)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#5314E6', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))

slope = np.polyfit(experience, salary, 1)[0]
ax.text(0.05, 0.85, '+$%.1fK/year' % slope, transform=ax.transAxes, fontsize=11,
        color='#6CF527', va='top')

ax.set_xlabel('Years of Experience', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Annual Salary ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Experience vs Salary', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support