Boxplot
Feature Importance
ML feature score distribution.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
COLORS = {'box': '#8B5CF6', 'median': '#FFFFFF', 'background': '#FFFFFF', 'text': '#1E293B', 'text_muted': '#64748B', 'grid': '#F1F5F9'}
np.random.seed(42)
data = [np.random.beta(a, b, 50) for a, b in [(8, 2), (5, 3), (4, 4), (3, 5), (2, 6)]]
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])
bp = ax.boxplot(data, vert=False, widths=0.5, patch_artist=True, showfliers=False,
medianprops=dict(color=COLORS['median'], linewidth=2),
boxprops=dict(facecolor=COLORS['box'], edgecolor='white'),
whiskerprops=dict(color=COLORS['box']), capprops=dict(color=COLORS['box']))
ax.set_yticklabels(['Feature A', 'Feature B', 'Feature C', 'Feature D', 'Feature E'])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.xaxis.grid(True, color=COLORS['grid'], linewidth=1, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_xlabel('Importance Score', fontsize=10, color=COLORS['text'], labelpad=10)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕