Heatmap

Feature Importance Heatmap

Dark theme heatmap showing ML feature importance by model

Output
Feature Importance Heatmap
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch

fig, ax = plt.subplots(figsize=(12, 9), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

np.random.seed(42)
features = ['Age', 'Income', 'Education', 'Location', 'Device', 'Time', 'History', 'Referral']
models = ['XGBoost', 'Random Forest', 'Neural Net', 'LogReg', 'SVM']
data = np.random.uniform(0, 1, (len(models), len(features)))

colors = ['#1e293b', '#164e63', '#0891b2', '#f472b6', '#fce7f3']
cmap = LinearSegmentedColormap.from_list('ml', colors, N=256)

cell_w, cell_h = 0.88, 0.82
for i in range(len(models)):
    for j in range(len(features)):
        val = data[i, j]
        rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
                               boxstyle="round,pad=0.02,rounding_size=0.12",
                               facecolor=cmap(val), edgecolor='#e2e8f0', linewidth=1.5)
        ax.add_patch(rect)
        ax.text(j, i, f'{val:.2f}', ha='center', va='center', color='#1e293b', fontsize=9, fontweight='bold')

ax.set_xlim(-0.5, len(features)-0.5)
ax.set_ylim(-0.5, len(models)-0.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(len(features)))
ax.set_yticks(range(len(models)))
ax.set_xticklabels(features, rotation=45, ha='right', color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(models, color='#1e293b', fontsize=10, fontweight='500')

sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(0, 1))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Importance', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')

for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Feature Importance by Model', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support