Heatmap
Feature Importance Heatmap
Dark theme heatmap showing ML feature importance by model
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch
fig, ax = plt.subplots(figsize=(12, 9), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
np.random.seed(42)
features = ['Age', 'Income', 'Education', 'Location', 'Device', 'Time', 'History', 'Referral']
models = ['XGBoost', 'Random Forest', 'Neural Net', 'LogReg', 'SVM']
data = np.random.uniform(0, 1, (len(models), len(features)))
colors = ['#1e293b', '#164e63', '#0891b2', '#f472b6', '#fce7f3']
cmap = LinearSegmentedColormap.from_list('ml', colors, N=256)
cell_w, cell_h = 0.88, 0.82
for i in range(len(models)):
for j in range(len(features)):
val = data[i, j]
rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
boxstyle="round,pad=0.02,rounding_size=0.12",
facecolor=cmap(val), edgecolor='#e2e8f0', linewidth=1.5)
ax.add_patch(rect)
ax.text(j, i, f'{val:.2f}', ha='center', va='center', color='#1e293b', fontsize=9, fontweight='bold')
ax.set_xlim(-0.5, len(features)-0.5)
ax.set_ylim(-0.5, len(models)-0.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(len(features)))
ax.set_yticks(range(len(models)))
ax.set_xticklabels(features, rotation=45, ha='right', color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(models, color='#1e293b', fontsize=10, fontweight='500')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(0, 1))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Importance', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')
for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Feature Importance by Model', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Heatmap examples
☕