Faceted Scatter Plot
Fertilizer Response by Crop Type
Agricultural productivity regression across nutrient treatments
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(666)
fertilizers = ['Nitrogen', 'Phosphorus', 'Potassium', 'Organic']
data = []
for fert in fertilizers:
n = 40
application = np.random.uniform(10, 200, n)
yields = {'Nitrogen': 0.025, 'Phosphorus': 0.018, 'Potassium': 0.015, 'Organic': 0.012}
crop_yield = 3 + yields[fert] * application + np.random.normal(0, 0.4, n)
for a, y in zip(application, crop_yield):
data.append({'Application (kg/ha)': a, 'Yield (t/ha)': y, 'Fertilizer': fert})
df = pd.DataFrame(data)
sns.set_style("whitegrid", {
'axes.facecolor': '#ffffff',
'figure.facecolor': '#ffffff',
'grid.color': '#eeeeee'
})
palette = ['#276CF5', '#F5276C', '#F5B027', '#6CF527']
g = sns.lmplot(
data=df,
x='Application (kg/ha)',
y='Yield (t/ha)',
hue='Fertilizer',
col='Fertilizer',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.75, 's': 52, 'edgecolor': 'white', 'linewidths': 0.6},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
g.fig.suptitle('Nutrient Response Curves', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕