Ridgeline Plot

Fitness Activity Duration by Type

Workout length distributions with energetic gradient fills

Output
Fitness Activity Duration by Type
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(321)

activities = ['HIIT', 'Yoga', 'Running', 'Cycling', 'Swimming', 'Strength']
colors = ['#F5276C', '#9C2007', '#F5B027', '#6CF527', '#27D3F5', '#4927F5']

data = {
    'HIIT': np.random.gamma(3, 8, 500),
    'Yoga': np.random.gamma(5, 12, 500),
    'Running': np.random.gamma(4, 10, 500),
    'Cycling': np.random.gamma(5, 15, 500),
    'Swimming': np.random.gamma(4, 12, 500),
    'Strength': np.random.gamma(4, 13, 500)
}

fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

overlap = 1.6
x_range = np.linspace(0, 120, 300)

for i, (activity, duration) in enumerate(data.items()):
    kde = stats.gaussian_kde(duration, bw_method=0.3)
    y = kde(x_range) * 3.5
    baseline = i * overlap
    
    ax.fill_between(x_range, baseline, y + baseline, alpha=0.7, color=colors[i])
    ax.plot(x_range, y + baseline, color=colors[i], linewidth=2.5)
    
    ax.text(-3, baseline + 0.12, activity, fontsize=11, color='#1f2937',
            ha='right', va='bottom', fontweight='600')

ax.set_xlim(-22, 120)
ax.set_ylim(-0.3, len(activities) * overlap + 1.8)
ax.set_xlabel('Duration (minutes)', fontsize=12, color='#374151', fontweight='500')
ax.set_title('Fitness Activity Duration by Type', fontsize=16, color='#1f2937', fontweight='bold', pad=20)

ax.tick_params(axis='x', colors='#374151', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['bottom'].set_color('#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support