Ridgeline Plot
Fitness Activity Duration by Type
Workout length distributions with energetic gradient fills
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(321)
activities = ['HIIT', 'Yoga', 'Running', 'Cycling', 'Swimming', 'Strength']
colors = ['#F5276C', '#9C2007', '#F5B027', '#6CF527', '#27D3F5', '#4927F5']
data = {
'HIIT': np.random.gamma(3, 8, 500),
'Yoga': np.random.gamma(5, 12, 500),
'Running': np.random.gamma(4, 10, 500),
'Cycling': np.random.gamma(5, 15, 500),
'Swimming': np.random.gamma(4, 12, 500),
'Strength': np.random.gamma(4, 13, 500)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
overlap = 1.6
x_range = np.linspace(0, 120, 300)
for i, (activity, duration) in enumerate(data.items()):
kde = stats.gaussian_kde(duration, bw_method=0.3)
y = kde(x_range) * 3.5
baseline = i * overlap
ax.fill_between(x_range, baseline, y + baseline, alpha=0.7, color=colors[i])
ax.plot(x_range, y + baseline, color=colors[i], linewidth=2.5)
ax.text(-3, baseline + 0.12, activity, fontsize=11, color='#1f2937',
ha='right', va='bottom', fontweight='600')
ax.set_xlim(-22, 120)
ax.set_ylim(-0.3, len(activities) * overlap + 1.8)
ax.set_xlabel('Duration (minutes)', fontsize=12, color='#374151', fontweight='500')
ax.set_title('Fitness Activity Duration by Type', fontsize=16, color='#1f2937', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#374151', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['bottom'].set_color('#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕