Ridgeline Plot
Flight Delays by Airline
Departure delay distributions across major airlines
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
airlines = ['Delta', 'United', 'American', 'Southwest', 'JetBlue']
colors = ['#27D3F5', '#F5276C', '#6CF527', '#F5B027', '#4927F5']
# Generate delay data in minutes
data = {
'Delta': np.concatenate([np.random.exponential(12, 200), np.random.normal(5, 3, 100)]),
'United': np.concatenate([np.random.exponential(18, 200), np.random.normal(8, 4, 100)]),
'American': np.concatenate([np.random.exponential(15, 200), np.random.normal(6, 3, 100)]),
'Southwest': np.concatenate([np.random.exponential(10, 200), np.random.normal(4, 2, 100)]),
'JetBlue': np.concatenate([np.random.exponential(14, 200), np.random.normal(7, 3, 100)])
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
overlap = 2.2
x_range = np.linspace(-10, 80, 300)
for i, (airline, delays) in enumerate(data.items()):
delays = np.clip(delays, 0, 80)
kde = stats.gaussian_kde(delays, bw_method=0.25)
y = kde(x_range) * 8
baseline = i * overlap
ax.fill_between(x_range, baseline, y + baseline,
alpha=0.75, color=colors[i], linewidth=0)
ax.plot(x_range, y + baseline, color=colors[i], linewidth=2)
ax.text(-12, baseline + 0.3, airline, fontsize=11, color='#1f2937',
ha='right', va='bottom', fontweight='500')
ax.set_xlim(-35, 80)
ax.set_ylim(-0.5, len(airlines) * overlap + 1.5)
ax.set_xlabel('Delay (minutes)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Flight Delays by Airline', fontsize=16, color='#1f2937',
fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#374151', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕