Calendar Heatmap

Focus Time Calendar

Deep work hours tracking for concentration and flow state analysis.

Output
Focus Time Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(1010)

days = 365
# Focus hours per day (0-8)
focus = np.zeros(days)
for i in range(days):
    dow = i % 7
    if dow < 5:  # Weekday
        focus[i] = np.random.choice([1, 2, 3, 4, 5, 6, 7, 8], p=[0.05, 0.1, 0.15, 0.25, 0.2, 0.15, 0.07, 0.03])
    else:
        focus[i] = np.random.choice([0, 1, 2, 3], p=[0.4, 0.3, 0.2, 0.1])

focus_levels = np.digitize(focus, bins=[0, 1, 2, 4, 6, 7]) - 1

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(focus_levels):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

colors = ['#ffffff', '#ecfdf5', '#6ee7b7', '#10b981', '#047857', '#064e3b']
cmap = LinearSegmentedColormap.from_list('focus', colors, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#374151')

ax.set_title('Deep Focus Time - Flow State Hours', fontsize=16, color='#111827', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)

ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db') 
                   for c, l in zip(colors, ['<1h', '1-2h', '2-4h', '4-6h', '6-7h', '7h+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6, 
          fontsize=8, facecolor='white', edgecolor='#d1d5db', labelcolor='#374151')

total = int(np.sum(focus))
avg = np.mean(focus[focus > 0])
ax.annotate(f'Total: {total}h | Avg: {avg:.1f}h/work day', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=10, color='#047857', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support