Mirror Chart

Free vs Premium User Engagement

Mirror density comparing user activity with LTV analysis

Output
Free vs Premium User Engagement
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(1984)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'

free = np.random.exponential(8, 2000)
premium = np.random.gamma(4, 10, 800)
free = free[(free > 0) & (free < 60)]
premium = premium[(premium > 5) & (premium < 80)]

fig, ax = plt.subplots(figsize=(12, 7), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x = np.linspace(0, 80, 400)

kde_p = gaussian_kde(premium)
y_p = kde_p(x)
ax.fill_between(x, y_p, alpha=0.3, color='#F5B027')
ax.plot(x, y_p, color='#F5B027', linewidth=2, label='Premium Users (n=%d)' % len(premium))

kde_f = gaussian_kde(free)
y_f = kde_f(x) * -1
ax.fill_between(x, y_f, alpha=0.3, color='#4927F5')
ax.plot(x, y_f, color='#4927F5', linewidth=2, label='Free Users (n=%d)' % len(free))

ax.axhline(0, color=TEXT_COLOR, linewidth=1.5)

avg_p = np.mean(premium)
avg_f = np.mean(free)
ax.axvline(avg_p, color='#F5B027', linestyle='--', linewidth=1.5, alpha=0.7)
ax.axvline(avg_f, color='#4927F5', linestyle='--', linewidth=1.5, alpha=0.7)

engagement_lift = (avg_p - avg_f) / avg_f * 100
arpu_premium = avg_p * 0.50
arpu_free = avg_f * 0.05

stats_text = 'ARPU Estimate:\nPremium: $%.2f/mo\nFree: $%.2f/mo\nLift: %.0fx' % (arpu_premium, arpu_free, arpu_premium/arpu_free)
ax.text(0.02, 0.98, stats_text.replace('\n', chr(10)), transform=ax.transAxes, fontsize=10,
        color=TEXT_COLOR, verticalalignment='top', fontfamily='monospace',
        bbox=dict(boxstyle='round,pad=0.5', facecolor='#f8fafc', edgecolor='#e5e7eb', alpha=0.9))

ax.text(0.98, 0.98, 'Premium: +%.0f%% engagement' % engagement_lift, 
        transform=ax.transAxes, fontsize=11, color='#F5B027', ha='right', va='top', fontweight='bold')

ax.set_xlabel('Monthly Session Time (minutes)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('SaaS User Engagement: Free vs Premium', fontsize=14, 
             color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#e5e7eb')

ax.legend(loc='upper right', facecolor=BG_COLOR, edgecolor='#e5e7eb', 
          labelcolor=TEXT_COLOR, fontsize=10)
ax.set_xlim(0, 80)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support