KDE Plot

Gene Expression Level KDE

Cumulative density of gene expression levels in cancer vs normal tissue

Output
Gene Expression Level KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(789)
BG_COLOR = '#0d1117'
TEXT_COLOR = 'white'

# Expression levels (log2 TPM)
normal = np.random.normal(5, 1.5, 600)
tumor = np.random.normal(7, 2.0, 600)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(0, 14, 500)

for data, color, label in [(normal, '#27F5B0', 'Normal Tissue'), 
                            (tumor, '#F5276C', 'Tumor Tissue')]:
    kde = gaussian_kde(data)
    cdf = np.array([kde.integrate_box_1d(-np.inf, x) for x in x_range])
    ax.plot(x_range, cdf, color=color, linewidth=3, label=label)

ax.axhline(0.5, color='#888888', linestyle=':', alpha=0.7)
ax.text(12, 0.52, 'Median', color='#888888', fontsize=10)

ax.set_xlabel('Expression Level (log2 TPM)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Cumulative Probability', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Gene Expression: Cumulative Distribution', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333333')
ax.legend(facecolor=BG_COLOR, edgecolor='#333333', labelcolor=TEXT_COLOR, fontsize=10, loc='lower right')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support