Hexbin Plot

Gene Expression Levels

Bioinformatics hexbin comparing gene expression under two conditions

Output
Gene Expression Levels
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(789)
control = np.random.lognormal(2, 1, 5000)
treatment = control * np.random.lognormal(0.2, 0.5, 5000)

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#0a0a14')
ax.set_facecolor('#0a0a14')

colors = ['#0a0a14', '#1a1a3f', '#2f2f6f', '#4444af', '#5f5fdf', '#7f7fff', '#9f9fff', '#bfbfff']
cmap = LinearSegmentedColormap.from_list('bio', colors, N=256)

hb = ax.hexbin(np.log2(control), np.log2(treatment), gridsize=30, cmap=cmap, mincnt=1, edgecolors='none')

cbar = plt.colorbar(hb, ax=ax, pad=0.02, shrink=0.8)
cbar.ax.set_facecolor('#0a0a14')
cbar.outline.set_edgecolor('#2f2f6f')
cbar.ax.tick_params(colors='#7f7fff', labelsize=9)
cbar.set_label('Gene Count', color='#7f7fff', fontsize=10)

# Diagonal reference line
lims = [0, 12]
ax.plot(lims, lims, '--', color='#4444af', linewidth=1, alpha=0.7)

ax.set_xlabel('Control (log2)', color='#7f7fff', fontsize=11)
ax.set_ylabel('Treatment (log2)', color='#7f7fff', fontsize=11)
ax.tick_params(colors='#7f7fff', labelsize=10)
for spine in ax.spines.values():
    spine.set_visible(False)

plt.tight_layout()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support