Raincloud Plot
Gene Expression Levels by Cancer Type
Biomarker expression across cancer subtypes
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import ptitprince as pt
np.random.seed(105)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
COLORS = ['#9C2007', '#F5276C', '#27D3F5']
types = ['Subtype A', 'Subtype B', 'Subtype C']
data = pd.DataFrame({
'Expression': np.concatenate([
np.random.lognormal(2.5, 0.8, 90),
np.random.lognormal(3.2, 0.6, 85),
np.random.lognormal(2.8, 1.0, 95)
]),
'Type': ['Subtype A']*90 + ['Subtype B']*85 + ['Subtype C']*95
})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
pt.RainCloud(x='Type', y='Expression', data=data, palette=COLORS,
bw=.2, width_viol=.6, ax=ax, orient='h', alpha=.65,
dodge=True, pointplot=False, move=.2)
ax.set_xlabel('Gene Expression (log2)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Cancer Subtype', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Biomarker Expression by Cancer Type', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Raincloud Plot examples
☕