Correlogram
Genomic Expression Patterns
Gene expression correlogram across tissue types with KDE distributions
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(789)
n = 140
tissues = np.random.choice(['Brain', 'Liver', 'Heart'], n)
data = {
'Gene A': np.where(tissues == 'Brain', np.random.normal(8, 2, n),
np.where(tissues == 'Liver', np.random.normal(4, 1.5, n), np.random.normal(6, 1.8, n))),
'Gene B': np.where(tissues == 'Brain', np.random.normal(5, 1.5, n),
np.where(tissues == 'Liver', np.random.normal(9, 2, n), np.random.normal(3, 1, n))),
'Gene C': np.random.normal(6, 2, n) + np.random.uniform(-1, 1, n),
'Gene D': np.random.normal(7, 1.8, n),
'Tissue': tissues
}
df = pd.DataFrame(data)
plt.style.use('dark_background')
sns.set_style("darkgrid", {'axes.facecolor': '#0a0a0f', 'figure.facecolor': '#0a0a0f', 'grid.color': '#333333'})
palette = {'Brain': '#5314E6', 'Liver': '#C82909', 'Heart': '#F5276C'}
g = sns.pairplot(
df,
hue='Tissue',
palette=palette,
height=2,
kind='kde',
diag_kind='kde',
plot_kws={'alpha': 0.6, 'levels': 5, 'linewidths': 1.5},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#0a0a0f')
for spine in ax.spines.values():
spine.set_color('#333333')
ax.tick_params(colors='#888888')
ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
g.fig.suptitle('Tissue-Specific Gene Expression', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.setp(g._legend.get_title(), color='white')
plt.setp(g._legend.get_texts(), color='white')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕