Clustermap

Genomic Variant Light Theme

Mutation impact across gene regions with neon colors on white background

Output
Genomic Variant Light Theme
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)

variants = ['Missense', 'Nonsense', 'Frameshift', 'Splice', 'Synonymous',
            'UTR_5', 'UTR_3', 'Intronic', 'Promoter', 'Enhancer']
genes = ['TP53', 'BRCA1', 'EGFR', 'KRAS', 'PIK3CA', 'PTEN', 'APC', 'MYC']

data = np.random.rand(10, 8) * 3
data[0, 0] += 4  # TP53 missense
data[1, 1] += 3  # BRCA1 nonsense
data[2, 2] += 3  # EGFR frameshift
data[3, 3] += 4  # KRAS splice

df = pd.DataFrame(data, index=variants, columns=genes)

# Gene function
gene_func = ['Tumor Suppressor']*4 + ['Oncogene']*4
func_palette = {'Tumor Suppressor': '#4927F5', 'Oncogene': '#F54927'}
col_colors = pd.Series(gene_func, index=genes).map(func_palette)

# Neon orange-yellow on light
neon_cmap = LinearSegmentedColormap.from_list('genomic', ['#f8fafc', '#4927F5', '#F54927', '#F5B027'])

g = sns.clustermap(df, cmap=neon_cmap, col_colors=col_colors,
                   method='average', metric='euclidean',
                   linewidths=0.4, linecolor='#e5e7eb',
                   figsize=(9, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12),
                   annot=True, fmt='.1f', annot_kws={'size': 8, 'color': '#1f2937'})

g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)

g.fig.suptitle('Genomic Variant Impact', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support