Linear Regression Plot

Height vs Weight Correlation

Anthropometric measurements relationship analysis

Output
Height vs Weight Correlation
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(411)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'

n = 100
height = np.random.normal(170, 10, n)
weight = 0.8 * height - 70 + np.random.normal(0, 8, n)

df = pd.DataFrame({'Height (cm)': height, 'Weight (kg)': weight})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Height (cm)',
    y='Weight (kg)',
    scatter_kws={'color': '#4927F5', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#F5276C', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#F5276C')
    collection.set_alpha(0.15)

corr = np.corrcoef(height, weight)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#F5276C', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))

ax.set_xlabel('Height (cm)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Weight (kg)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Height vs Weight Relationship', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#e5e7eb')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support