Histogram
Histogram with Outliers
Distribution with marked outliers.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
COLORS = {'bars': '#374151', 'outliers': '#DC2626', 'iqr': '#64748B', 'background': '#FFFFFF', 'text': '#1E293B', 'text_muted': '#64748B', 'grid': '#F1F5F9'}
np.random.seed(42)
data = np.concatenate([np.random.normal(50, 10, 450), np.random.normal(90, 5, 50)])
q1, q3 = np.percentile(data, [25, 75])
iqr = q3 - q1
lower, upper = q1 - 1.5*iqr, q3 + 1.5*iqr
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])
counts, bins, patches = ax.hist(data, bins=30, edgecolor='white', linewidth=0.5)
for i, (count, patch) in enumerate(zip(counts, patches)):
bin_center = (bins[i] + bins[i+1]) / 2
if bin_center < lower or bin_center > upper:
patch.set_facecolor(COLORS['outliers'])
patch.set_alpha(0.85)
else:
patch.set_facecolor(COLORS['bars'])
patch.set_alpha(0.85)
ax.axvline(lower, color=COLORS['iqr'], linewidth=1.5, linestyle='--', alpha=0.7)
ax.axvline(upper, color=COLORS['iqr'], linewidth=1.5, linestyle='--', alpha=0.7, label='IQR Bounds')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_xlabel('Value', fontsize=10, color=COLORS['text'], labelpad=10)
ax.set_ylabel('Count', fontsize=10, color=COLORS['text'], labelpad=10)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12), ncol=1, frameon=False, fontsize=9, labelcolor=COLORS['text_muted'])
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Basic Charts
More Histogram examples
☕