KDE Plot

House Price Distribution

KDE of residential property prices by neighborhood.

Output
House Price Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(106)

downtown = np.random.lognormal(13.2, 0.4, 300)
suburban = np.random.lognormal(12.8, 0.3, 500)
rural = np.random.lognormal(12.2, 0.35, 200)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

x = np.linspace(100000, 1500000, 500)

areas = [
    (downtown, 'Downtown', '#4927F5'),
    (suburban, 'Suburban', '#27D3F5'),
    (rural, 'Rural', '#6CF527'),
]

for data, label, color in areas:
    kde = stats.gaussian_kde(data)
    y = kde(x)
    median = np.median(data)
    ax.fill_between(x, y, alpha=0.3, color=color)
    ax.plot(x, y, color=color, linewidth=2.5, label=label + ' ($' + str(int(median/1000)) + 'K)')

ax.set_xlabel('Price ($)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('House Price Distribution by Area', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: '$' + str(int(x/1000)) + 'K'))
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(100000, 1500000)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support