Faceted Scatter Plot
Housing Prices by Region
Real estate value drivers across metropolitan areas
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(555)
regions = ['Urban Core', 'Suburban', 'Exurban', 'Rural']
data = []
for region in regions:
n = 42
sqft = np.random.uniform(800, 4000, n)
price_per_sqft = {'Urban Core': 450, 'Suburban': 280, 'Exurban': 180, 'Rural': 120}
price = price_per_sqft[region] * sqft / 1000 + np.random.normal(0, 50, n)
for sq, p in zip(sqft, price):
data.append({'Square Feet': sq, 'Price ($K)': p, 'Region': region})
df = pd.DataFrame(data)
sns.set_style("whitegrid", {
'axes.facecolor': '#ffffff',
'figure.facecolor': '#ffffff',
'grid.color': '#eeeeee'
})
palette = ['#C82909', '#27D3F5', '#6CF527', '#F5D327']
g = sns.lmplot(
data=df,
x='Square Feet',
y='Price ($K)',
hue='Region',
col='Region',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.7, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
g.fig.suptitle('Home Valuation by Location', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕