Correlogram
HR Productivity Correlogram
HR analytics correlogram of productivity indicators by department
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(222)
n = 170
dept = np.random.choice(['Engineering', 'Sales', 'Marketing'], n)
data = {
'Productivity': np.where(dept == 'Engineering', np.random.normal(85, 10, n),
np.where(dept == 'Sales', np.random.normal(78, 15, n), np.random.normal(80, 12, n))),
'Satisfaction': np.where(dept == 'Engineering', np.random.normal(72, 12, n),
np.where(dept == 'Sales', np.random.normal(68, 15, n), np.random.normal(75, 10, n))),
'Tenure (yrs)': np.where(dept == 'Engineering', np.random.normal(5, 2, n),
np.where(dept == 'Sales', np.random.normal(3, 1.5, n), np.random.normal(4, 1.8, n))),
'Training (hrs)': np.random.normal(40, 15, n),
'Department': dept
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'Engineering': '#27D3F5', 'Sales': '#F5276C', 'Marketing': '#F5B027'}
g = sns.pairplot(
df,
hue='Department',
palette=palette,
height=2,
kind='scatter',
diag_kind='kde',
markers=['s', 'o', '^'],
plot_kws={'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Workforce Analytics Dashboard', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕