Faceted Scatter Plot

Immunization Response by Demographics

Immunological response patterns across demographics

Output
Immunization Response by Demographics
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(4444)

age_groups = ['18-30', '31-50', '51-65', '65+']
data = []
for age in age_groups:
    n = 40
    antibody_titer = np.random.uniform(100, 5000, n)
    efficacy_slopes = {'18-30': 0.018, '31-50': 0.015, '51-65': 0.012, '65+': 0.008}
    efficacy = efficacy_slopes[age] * np.log(antibody_titer) * 100 + np.random.normal(0, 5, n)
    efficacy = np.clip(efficacy, 20, 99)
    for a, e in zip(antibody_titer, efficacy):
        data.append({'Antibody Titer': a, 'Protection (%)': e, 'Age Group': age})

df = pd.DataFrame(data)
df['Log Titer'] = np.log10(df['Antibody Titer'])

sns.set_style("whitegrid", {
    'axes.facecolor': '#ffffff',
    'figure.facecolor': '#ffffff',
    'grid.color': '#eeeeee'
})

palette = ['#6CF527', '#27D3F5', '#F5B027', '#F5276C']

g = sns.lmplot(
    data=df,
    x='Log Titer',
    y='Protection (%)',
    hue='Age Group',
    col='Age Group',
    col_wrap=2,
    height=3.5,
    aspect=1.2,
    palette=palette,
    scatter_kws={'alpha': 0.7, 's': 52, 'edgecolor': 'white', 'linewidths': 0.6},
    line_kws={'linewidth': 2.5},
    ci=95
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    ax.set_facecolor('#ffffff')
    for spine in ax.spines.values():
        spine.set_color('#dddddd')

g.fig.suptitle('Age-Stratified Immune Response', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support