KDE Plot
Internet Download Speed Distribution
KDE of broadband download speeds with ISP comparison.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(104)
fiber = np.random.normal(450, 80, 400)
cable = np.random.normal(200, 50, 500)
dsl = np.random.normal(50, 20, 300)
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
x = np.linspace(0, 600, 500)
isps = [
(fiber, 'Fiber', '#276CF5'),
(cable, 'Cable', '#27D3F5'),
(dsl, 'DSL', '#F5B027'),
]
for data, label, color in isps:
kde = stats.gaussian_kde(data)
y = kde(x)
mean_val = np.mean(data)
ax.fill_between(x, y, alpha=0.3, color=color)
ax.plot(x, y, color=color, linewidth=2.5, label=label + ' (' + str(int(mean_val)) + ' Mbps)')
ax.axvline(100, color='#6CF527', linestyle='--', linewidth=2, alpha=0.7, label='FCC Broadband')
ax.set_xlabel('Download Speed (Mbps)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Internet Download Speed by Connection Type', fontsize=16, color='#1f2937', fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(0, 600)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕