Hexbin Plot

Investment Portfolio Analysis

Risk vs return distribution for portfolio optimization with modern light styling.

Output
Investment Portfolio Analysis
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)
n_assets = 8000

# Risk (volatility %) and return %
risk = np.random.lognormal(2, 0.6, n_assets)
risk = np.clip(risk, 2, 50)

# Return correlates with risk (with noise)
expected_return = 2 + 0.3 * risk + np.random.normal(0, 3, n_assets)
expected_return = np.clip(expected_return, -10, 40)

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#ffffff')
ax.set_facecolor('#f5f3ff')

colors = ['#f5f3ff', '#ede9fe', '#ddd6fe', '#c4b5fd', '#a78bfa', 
          '#8b5cf6', '#7c3aed', '#6d28d9', '#5b21b6', '#4c1d95']
cmap = LinearSegmentedColormap.from_list('violet', colors, N=256)

hb = ax.hexbin(risk, expected_return, gridsize=35, cmap=cmap, mincnt=1,
               edgecolors='white', linewidths=0.3)

# Efficient frontier approximation
risk_line = np.linspace(5, 40, 100)
frontier = 2 + 0.5 * risk_line - 0.002 * risk_line ** 2 + 5
ax.plot(risk_line, frontier, '-', color='#6d28d9', linewidth=3, alpha=0.9, label='Efficient Frontier')

# Risk-free rate
ax.axhline(y=4, color='#22c55e', linestyle='--', alpha=0.7, linewidth=2, label='Risk-Free Rate')

# Capital Market Line
cml_x = np.linspace(0, 40, 100)
cml_y = 4 + 0.5 * cml_x
ax.plot(cml_x, cml_y, ':', color='#0ea5e9', linewidth=2, alpha=0.8, label='Capital Market Line')

cbar = plt.colorbar(hb, ax=ax, pad=0.02, shrink=0.85)
cbar.set_label('Asset Count', fontsize=11, color='#4c1d95', labelpad=10)
cbar.ax.yaxis.set_tick_params(color='#5b21b6')
cbar.outline.set_edgecolor('#ddd6fe')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#5b21b6', fontsize=9)

ax.set_xlabel('Risk (Volatility %)', fontsize=12, color='#4c1d95', fontweight='600', labelpad=12)
ax.set_ylabel('Expected Return (%)', fontsize=12, color='#4c1d95', fontweight='600', labelpad=12)
ax.set_title('Portfolio Risk-Return Analysis', fontsize=16, color='#2e1065', fontweight='700', pad=20)

ax.tick_params(colors='#5b21b6', labelsize=10, length=0)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#ddd6fe')
ax.spines['bottom'].set_color('#ddd6fe')

ax.legend(loc='lower right', fontsize=9, frameon=True, facecolor='white', 
          edgecolor='#ddd6fe', labelcolor='#4c1d95')
ax.grid(True, alpha=0.3, color='#ddd6fe', linestyle='-', linewidth=0.5)
ax.set_axisbelow(True)
ax.set_xlim(0, 50)
ax.set_ylim(-10, 40)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support