Waterfall Chart
Investment Portfolio Performance Attribution
Light-themed waterfall chart showing portfolio performance attribution from starting value to ending value.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Patch
# Portfolio performance attribution (basis points)
categories = ['Benchmark\nReturn', 'Equity\nSelection', 'Sector\nAllocation', 'Currency\nEffect',
'Fixed Income', 'Alternatives', 'Fees', 'Portfolio\nReturn']
values = [0, 85, 42, -28, 35, 52, -45, 0]
# Calculate running total
initial = 720 # Benchmark return in bps (7.2%)
running_total = initial
bottoms = []
heights = []
colors = []
for i, (cat, val) in enumerate(zip(categories, values)):
if 'Benchmark' in cat:
bottoms.append(0)
heights.append(initial)
colors.append('#3b82f6')
elif 'Portfolio' in cat:
bottoms.append(0)
heights.append(running_total)
colors.append('#22c55e')
elif val > 0:
bottoms.append(running_total)
heights.append(val)
colors.append('#22c55e')
running_total += val
else:
bottoms.append(running_total + val)
heights.append(abs(val))
colors.append('#ef4444')
running_total += val
# Create figure
fig, ax = plt.subplots(figsize=(14, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
x = np.arange(len(categories))
bars = ax.bar(x, heights, bottom=bottoms, color=colors, width=0.65, edgecolor='#e5e7eb', linewidth=1)
# Add value labels
for i, (bar, val, bot, height) in enumerate(zip(bars, values, bottoms, heights)):
y_pos = bot + height / 2
if 'Benchmark' in categories[i] or 'Portfolio' in categories[i]:
label = f"{height/100:.2f}%"
ax.text(bar.get_x() + bar.get_width()/2, y_pos, label,
ha='center', va='center', fontsize=10, fontweight='bold', color='white')
else:
label = f"+{val}bp" if val > 0 else f"{val}bp"
ax.text(bar.get_x() + bar.get_width()/2, y_pos, label,
ha='center', va='center', fontsize=9, fontweight='bold', color='white')
# Connect bars
for i in range(len(x) - 1):
if i == 0:
y = initial
else:
y = bottoms[i] + heights[i]
ax.plot([x[i] + 0.35, x[i+1] - 0.35], [y, y],
color='#9ca3af', linestyle='--', linewidth=1.5, alpha=0.7)
# Styling
ax.set_xlim(-0.6, len(categories) - 0.4)
ax.set_ylim(0, max(bottoms[i] + heights[i] for i in range(len(heights))) * 1.1)
ax.set_xticks(x)
ax.set_xticklabels(categories, fontsize=9, color='#374151')
ax.set_ylabel('Return (basis points)', fontsize=12, color='#374151', fontweight='500')
ax.set_title('Portfolio Performance Attribution Analysis', fontsize=16, color='#111827', fontweight='bold', pad=20)
ax.tick_params(axis='y', colors='#374151', labelsize=10)
ax.yaxis.grid(True, linestyle='--', alpha=0.4, color='#e5e7eb')
ax.set_axisbelow(True)
for spine in ax.spines.values():
spine.set_color('#d1d5db')
# Alpha annotation
alpha = running_total - initial
ax.annotate(f'Alpha: +{alpha}bp ({alpha/100:.2f}%)', xy=(0.98, 0.95), xycoords='axes fraction',
fontsize=11, color='#16a34a', ha='right', fontweight='bold',
bbox=dict(boxstyle='round,pad=0.4', facecolor='#f0fdf4', edgecolor='#22c55e'))
# Legend outside plot
legend_elements = [
Patch(facecolor='#3b82f6', label='Benchmark'),
Patch(facecolor='#22c55e', label='Positive Attribution'),
Patch(facecolor='#ef4444', label='Negative Attribution')
]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.1),
ncol=3, fontsize=9, facecolor='white', edgecolor='#d1d5db', labelcolor='#374151')
plt.tight_layout()
plt.subplots_adjust(bottom=0.15)
plt.show()
Library
Matplotlib
Category
Financial
More Waterfall Chart examples
☕