Correlogram

Iris Species Classification

Classic botanical dataset correlogram with species differentiation

Output
Iris Species Classification
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(42)

n = 150
species = np.random.choice(['Setosa', 'Versicolor', 'Virginica'], n)
data = {
    'Sepal Length': np.where(species == 'Setosa', np.random.normal(5, 0.4, n),
                            np.where(species == 'Versicolor', np.random.normal(5.9, 0.5, n), np.random.normal(6.6, 0.6, n))),
    'Sepal Width': np.where(species == 'Setosa', np.random.normal(3.4, 0.4, n),
                           np.where(species == 'Versicolor', np.random.normal(2.8, 0.3, n), np.random.normal(3, 0.3, n))),
    'Petal Length': np.where(species == 'Setosa', np.random.normal(1.4, 0.2, n),
                            np.where(species == 'Versicolor', np.random.normal(4.3, 0.5, n), np.random.normal(5.5, 0.6, n))),
    'Petal Width': np.where(species == 'Setosa', np.random.normal(0.2, 0.1, n),
                           np.where(species == 'Versicolor', np.random.normal(1.3, 0.2, n), np.random.normal(2, 0.3, n))),
    'Species': species
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {
    'axes.facecolor': '#ffffff',
    'figure.facecolor': '#ffffff',
    'grid.color': '#eeeeee'
})

palette = {'Setosa': '#F5276C', 'Versicolor': '#27D3F5', 'Virginica': '#6CF527'}

g = sns.pairplot(
    df,
    hue='Species',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='kde',
    markers=['o', 's', 'D'],
    plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.8},
    diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Iris Morphometric Analysis', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support