Raincloud Plot

Irrigation Method Yield Raincloud

Comparing crop yields across different irrigation techniques.

Output
Irrigation Method Yield Raincloud
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

np.random.seed(1515)

# Yield in tons per hectare
rainfed = np.random.normal(2.8, 0.8, 80)
flood = np.random.normal(4.2, 1.0, 85)
sprinkler = np.random.normal(5.5, 0.9, 90)
drip = np.random.normal(6.2, 0.7, 75)

rainfed = np.clip(rainfed, 1.0, 5.0)
flood = np.clip(flood, 2.0, 7.0)
sprinkler = np.clip(sprinkler, 3.0, 8.0)
drip = np.clip(drip, 4.5, 8.5)

F_stat, p_value = stats.f_oneway(rainfed, flood, sprinkler, drip)

BG_COLOR = "#ffffff"
COLOR_SCALE = ["#9ca3af", "#276CF5", "#27D3F5", "#6CF527"]

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

y_data = [rainfed, flood, sprinkler, drip]
positions = [0, 1, 2, 3]
labels = ["Rainfed", "Flood", "Sprinkler", "Drip"]

for h in [2, 4, 6, 8]:
    ax.axhline(h, color='#e5e7eb', ls=(0, (5, 5)), alpha=0.8, zorder=0)

# Break-even threshold
ax.axhline(y=3.5, color='#ef4444', ls='--', alpha=0.6, lw=2)
ax.text(3.55, 3.5, "Break-even", color='#ef4444', fontsize=9, va='center')

violins = ax.violinplot(y_data, positions=positions, widths=0.5, 
                         bw_method="silverman", showmeans=False, 
                         showmedians=False, showextrema=False)
for pc in violins["bodies"]:
    pc.set_facecolor("none")
    pc.set_edgecolor("#374151")
    pc.set_linewidth(1.8)

bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
                medianprops=dict(linewidth=3, color='#1f2937'),
                whiskerprops=dict(linewidth=2, color='#9ca3af'),
                boxprops=dict(linewidth=2, color='#9ca3af'))

for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
    x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
    ax.scatter(x_jitter, y, s=50, color=color, alpha=0.5, zorder=2)

means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
    ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
    ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color="#374151", zorder=3, lw=1.5)
    ax.text(i + 0.3, mean, f"μ={mean:.1f}t/ha", fontsize=10, va="center", color='#1f2937',
            bbox=dict(facecolor='white', edgecolor=color, boxstyle="round,pad=0.15", lw=2))

# Water efficiency
water_eff = ["100%", "45%", "75%", "90%"]
for i, (eff, color) in enumerate(zip(water_eff, COLOR_SCALE)):
    ax.text(i, 0.3, f"Efficiency: {eff}", ha='center', fontsize=9, color=color)

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_color('#d1d5db')
ax.spines["bottom"].set_color('#d1d5db')
ax.tick_params(colors='#374151', length=0)

xlabels_full = [f"{l}\n(n={len(y_data[i])})" for i, l in enumerate(labels)]
ax.set_xticks(positions)
ax.set_xticklabels(xlabels_full, size=11, color='#1f2937')
ax.set_ylabel("Yield (tons/hectare)", size=14, color='#1f2937', fontweight='bold')

ax.set_title("Crop Yield by Irrigation Method", fontsize=14, color="white", fontweight="bold", pad=20)


ax.set_ylim(0, 9.5)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support