Dendrogram
Market Sector Hierarchy Light
Financial market sector clustering with bright neon palette
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage, set_link_color_palette
np.random.seed(456)
sectors = ['Technology', 'Healthcare', 'Financials', 'Energy', 'Materials',
'Consumer Disc.', 'Consumer Staples', 'Industrials', 'Utilities',
'Real Estate', 'Telecom', 'Basic Materials']
performance = np.random.rand(len(sectors), 6) * 100
Z = linkage(performance, method='complete')
fig, ax = plt.subplots(figsize=(13, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
set_link_color_palette(['#F5276C', '#6CF527', '#27D3F5', '#F5B027', '#5314E6'])
dn = dendrogram(Z, labels=sectors, leaf_rotation=35, leaf_font_size=11,
color_threshold=0.6*max(Z[:,2]), above_threshold_color='#9ca3af', ax=ax)
ax.set_title('Market Sector Performance Clustering', fontsize=15,
color='#1f2937', fontweight='bold', pad=20)
ax.set_xlabel('Sector', fontsize=11, color='#374151')
ax.set_ylabel('Distance (Performance Similarity)', fontsize=11, color='#374151')
ax.tick_params(axis='both', colors='#374151', labelsize=10)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#d1d5db')
ax.spines['bottom'].set_color('#d1d5db')
ax.yaxis.grid(True, color='#f9fafb', linewidth=0.8)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Dendrogram examples
☕