Error Bar Chart

Meditation App Clinical Study

Clinical study results comparing meditation app effectiveness across metrics.

Output
Meditation App Clinical Study
Python
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(42)

metrics = ['Anxiety\nReduction', 'Depression\nImprovement', 'Sleep\nQuality', 'Stress\nManagement', 'Mindfulness']
headspace = np.array([32, 28, 35, 38, 45])
calm = np.array([30, 25, 42, 35, 48])
waking_up = np.array([25, 35, 38, 32, 52])
err = np.array([6, 7, 5, 6, 5])

fig, ax = plt.subplots(figsize=(11, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

x = np.arange(len(metrics))
width = 0.25

ax.bar(x - width, headspace, width, yerr=err, label='Headspace',
       color='#F5B027', edgecolor='white', linewidth=1.5, capsize=4,
       error_kw={'ecolor': '#374151', 'elinewidth': 1.5})
ax.bar(x, calm, width, yerr=err, label='Calm',
       color='#27D3F5', edgecolor='white', linewidth=1.5, capsize=4,
       error_kw={'ecolor': '#374151', 'elinewidth': 1.5})
ax.bar(x + width, waking_up, width, yerr=err, label='Waking Up',
       color='#6CF527', edgecolor='white', linewidth=1.5, capsize=4,
       error_kw={'ecolor': '#374151', 'elinewidth': 1.5})

ax.axhline(y=30, color='#F5276C', linestyle='--', linewidth=2, 
           label='Clinical Threshold', alpha=0.7)

ax.set_xlabel('Metric', fontsize=12, color='#374151', fontweight='600')
ax.set_ylabel('Improvement (%)', fontsize=12, color='#374151', fontweight='600')
ax.set_title('Meditation App Clinical Study', fontsize=15, 
             color='#1f2937', fontweight='bold', pad=20)

ax.set_xticks(x)
ax.set_xticklabels(metrics, fontsize=10)
ax.legend(facecolor='#ffffff', edgecolor='#e5e7eb', fontsize=10, loc='upper right')
ax.tick_params(colors='#6b7280', labelsize=10)
ax.set_ylim(0, 65)
ax.grid(True, axis='y', alpha=0.4, color='#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#d1d5db')
ax.spines['bottom'].set_color('#d1d5db')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support