Correlogram
Metabolic Health Correlogram
Clinical correlogram of metabolic markers by diagnosis status
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(321)
n = 170
status = np.random.choice(['Normal', 'Prediabetic', 'Diabetic'], n)
data = {
'Glucose': np.where(status == 'Normal', np.random.normal(90, 10, n),
np.where(status == 'Prediabetic', np.random.normal(115, 12, n), np.random.normal(150, 25, n))),
'BMI': np.where(status == 'Normal', np.random.normal(23, 3, n),
np.where(status == 'Prediabetic', np.random.normal(28, 4, n), np.random.normal(32, 5, n))),
'HbA1c (%)': np.where(status == 'Normal', np.random.normal(5.2, 0.3, n),
np.where(status == 'Prediabetic', np.random.normal(6, 0.3, n), np.random.normal(7.5, 1, n))),
'Insulin': np.where(status == 'Normal', np.random.normal(8, 3, n),
np.where(status == 'Prediabetic', np.random.normal(15, 5, n), np.random.normal(25, 10, n))),
'Status': status
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'Normal': '#6CF527', 'Prediabetic': '#F5B027', 'Diabetic': '#F5276C'}
g = sns.pairplot(
df,
hue='Status',
palette=palette,
height=2,
kind='reg',
diag_kind='kde',
markers=['o', 's', 'D'],
plot_kws={'scatter_kws': {'alpha': 0.65, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6}, 'line_kws': {'linewidth': 2}},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Metabolic Health Indicators', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕