Clustermap

Metabolomics Pathway Heatmap

Metabolite concentrations across experimental conditions

Output
Metabolomics Pathway Heatmap
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(123)

metabolites = ['Glucose', 'Lactate', 'Pyruvate', 'Citrate', 'Succinate', 
               'Fumarate', 'Malate', 'Glutamate', 'Alanine', 'Serine',
               'Glycine', 'Leucine', 'Valine', 'Isoleucine', 'Proline']
conditions = ['Ctrl_1', 'Ctrl_2', 'Ctrl_3', 'Drug_1', 'Drug_2', 'Drug_3', 'Fast_1', 'Fast_2', 'Fast_3']

data = np.random.randn(15, 9)
data[:5, 3:6] += 2  # Drug effect on glycolysis
data[5:10, 6:] -= 1.5  # Fasting effect on TCA

df = pd.DataFrame(data, index=metabolites, columns=conditions)

# Condition colors
cond_type = ['Control']*3 + ['Drug']*3 + ['Fasting']*3
cond_palette = {'Control': '#27D3F5', 'Drug': '#F5276C', 'Fasting': '#F5B027'}
col_colors = pd.Series(cond_type, index=conditions).map(cond_palette)

neon_cmap = LinearSegmentedColormap.from_list('neon', ['#27D3F5', '#0a0a0f', '#F5276C'])

g = sns.clustermap(df, cmap=neon_cmap, center=0, col_colors=col_colors,
                   method='average', metric='euclidean',
                   linewidths=0.3, linecolor='#1a1a2e',
                   figsize=(9, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12),
                   tree_kws={'linewidths': 1.5, 'colors': '#6CF527'})

g.fig.patch.set_facecolor('#0a0a0f')
g.ax_heatmap.set_facecolor('#0a0a0f')
g.ax_heatmap.tick_params(colors='white', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#0a0a0f')
g.ax_col_dendrogram.set_facecolor('#0a0a0f')
g.cax.tick_params(colors='white', labelsize=7)

g.fig.suptitle('Metabolomics Analysis', color='white', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support