Clustermap
Metabolomics Pathway Heatmap
Metabolite concentrations across experimental conditions
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(123)
metabolites = ['Glucose', 'Lactate', 'Pyruvate', 'Citrate', 'Succinate',
'Fumarate', 'Malate', 'Glutamate', 'Alanine', 'Serine',
'Glycine', 'Leucine', 'Valine', 'Isoleucine', 'Proline']
conditions = ['Ctrl_1', 'Ctrl_2', 'Ctrl_3', 'Drug_1', 'Drug_2', 'Drug_3', 'Fast_1', 'Fast_2', 'Fast_3']
data = np.random.randn(15, 9)
data[:5, 3:6] += 2 # Drug effect on glycolysis
data[5:10, 6:] -= 1.5 # Fasting effect on TCA
df = pd.DataFrame(data, index=metabolites, columns=conditions)
# Condition colors
cond_type = ['Control']*3 + ['Drug']*3 + ['Fasting']*3
cond_palette = {'Control': '#27D3F5', 'Drug': '#F5276C', 'Fasting': '#F5B027'}
col_colors = pd.Series(cond_type, index=conditions).map(cond_palette)
neon_cmap = LinearSegmentedColormap.from_list('neon', ['#27D3F5', '#0a0a0f', '#F5276C'])
g = sns.clustermap(df, cmap=neon_cmap, center=0, col_colors=col_colors,
method='average', metric='euclidean',
linewidths=0.3, linecolor='#1a1a2e',
figsize=(9, 8), dendrogram_ratio=(0.12, 0.12),
cbar_pos=(0.01, 0.08, 0.008, 0.12),
tree_kws={'linewidths': 1.5, 'colors': '#6CF527'})
g.fig.patch.set_facecolor('#0a0a0f')
g.ax_heatmap.set_facecolor('#0a0a0f')
g.ax_heatmap.tick_params(colors='white', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#0a0a0f')
g.ax_col_dendrogram.set_facecolor('#0a0a0f')
g.cax.tick_params(colors='white', labelsize=7)
g.fig.suptitle('Metabolomics Analysis', color='white', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕