KDE Plot

ML Model Inference Time KDE

Density distribution of ML model inference latency across deployment platforms

Output
ML Model Inference Time KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(333)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

# Inference time in ms
cloud_gpu = np.random.lognormal(2.5, 0.4, 500)
edge_device = np.random.lognormal(3.5, 0.5, 500)
mobile = np.random.lognormal(4.2, 0.6, 500)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(0, 300, 500)

for data, color, label in [(cloud_gpu, '#4927F5', 'Cloud GPU'), 
                            (edge_device, '#27F5B0', 'Edge Device'),
                            (mobile, '#F5B027', 'Mobile')]:
    data_clipped = data[data < 300]
    kde = gaussian_kde(data_clipped)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.3, color=color)

ax.axvline(100, color='#F5276C', linestyle='--', alpha=0.8, linewidth=2, label='Real-time: 100ms')

ax.set_xlabel('Inference Time (ms)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('ML Model Inference Latency by Platform', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.set_xlim(0, 300)

ax.tick_params(colors='#888888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333333')
ax.legend(facecolor=BG_COLOR, edgecolor='#333333', labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support