KDE Plot

Monthly Electricity Bill Distribution

KDE of monthly electricity bills with seasonal consumption patterns.

Output
Monthly Electricity Bill Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(201)

bills = np.concatenate([
    np.random.normal(80, 20, 300),
    np.random.normal(150, 35, 200),
    np.random.normal(200, 40, 150)
])
bills = bills[(bills > 20) & (bills < 350)]

kde = stats.gaussian_kde(bills)
x = np.linspace(20, 350, 500)
y = kde(x)

colors = ['#1e3a8a', '#3b82f6', '#22d3ee', '#fbbf24', '#f97316', '#dc2626']

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

for i in range(len(x)-1):
    norm_val = (x[i] - 20) / 330
    color_idx = int(norm_val * (len(colors) - 1))
    color_idx = max(0, min(color_idx, len(colors)-1))
    ax.fill_between(x[i:i+2], y[i:i+2], alpha=0.6, color=colors[color_idx])

ax.plot(x, y, color='#374151', linewidth=2.5)

thresholds = [(100, 'Low'), (175, 'Medium'), (250, 'High')]
for val, label in thresholds:
    ax.axvline(val, color='#9ca3af', linestyle='--', linewidth=1.5, alpha=0.7)
    ax.text(val+5, max(y)*0.9, label, color='#6b7280', fontsize=9, fontweight='bold')

mean_bill = np.mean(bills)
ax.axvline(mean_bill, color='#374151', linestyle='-', linewidth=2)
ax.text(mean_bill+5, max(y)*0.7, 'Avg: $' + str(int(mean_bill)), color='#374151', fontsize=10, fontweight='bold')

ax.set_xlabel('Monthly Bill ($)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Monthly Electricity Bill Distribution', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(20, 350)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support