Heatmap
Monthly Revenue by Department
Seamless heatmap showing revenue distribution across departments and months
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
fig, ax = plt.subplots(figsize=(14, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
np.random.seed(42)
departments = ['Sales', 'Marketing', 'Engineering', 'Support', 'Operations']
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
data = np.random.randint(100, 800, (len(departments), len(months)))
# Modern gradient: Sky Blue to Indigo
colors = ['#e0f2fe', '#7dd3fc', '#38bdf8', '#0284c7', '#075985']
cmap = LinearSegmentedColormap.from_list('modern', colors, N=256)
im = ax.imshow(data, cmap=cmap, aspect='auto')
ax.set_xticks(range(len(months)))
ax.set_yticks(range(len(departments)))
ax.set_xticklabels(months, color='#374151', fontsize=10)
ax.set_yticklabels(departments, color='#1f2937', fontsize=10, fontweight='500')
for i in range(len(departments)):
for j in range(len(months)):
val = data[i, j]
color = '#ffffff' if val > 500 else '#1f2937'
ax.text(j, i, f'{val}', ha='center', va='center', color=color, fontsize=8, fontweight='500')
cbar = plt.colorbar(im, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Revenue ($K)', color='#1f2937', fontsize=11)
cbar.outline.set_edgecolor('#e5e7eb')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#6b7280')
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
ax.set_xlabel('Month', fontsize=11, color='#374151', fontweight='500')
ax.set_title('Monthly Revenue by Department', fontsize=16, color='#111827', fontweight='bold', pad=15)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Heatmap examples
☕