Heatmap

Monthly Sales Performance

Modern heatmap showing sales performance across regions and months

Output
Monthly Sales Performance
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)
regions = ['North America', 'Europe', 'Asia Pacific', 'Latin America', 'Middle East', 'Africa']
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
data = np.random.randint(40, 100, (len(regions), len(months)))
data[0, 6:9] = [95, 98, 92]
data[2, 3:6] = [88, 91, 94]

colors = ['#f8fafc', '#ddd6fe', '#a78bfa', '#7c3aed']
cmap = LinearSegmentedColormap.from_list('PurpleGrad', colors, N=256)

fig, ax = plt.subplots(figsize=(14, 7), facecolor='white')
im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=40, vmax=100)

ax.set_xticks(range(len(months)))
ax.set_yticks(range(len(regions)))
ax.set_xticklabels(months, fontsize=10, color='#374151')
ax.set_yticklabels(regions, fontsize=10, color='#1f2937')

for i in range(len(regions)):
    for j in range(len(months)):
        val = data[i, j]
        color = '#ffffff' if val > 80 else '#1f2937'
        ax.text(j, i, f'{val}', ha='center', va='center', fontsize=9, fontweight='500', color=color)

cbar = plt.colorbar(im, ax=ax, shrink=0.6, pad=0.02)
cbar.set_label('Performance %', fontsize=11, color='#1f2937')
cbar.ax.tick_params(labelsize=9, colors='#6b7280')
cbar.outline.set_visible(False)

for spine in ax.spines.values():
    spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Monthly Sales Performance by Region', fontsize=16, color='#111827', fontweight='bold', pad=15)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support