Raincloud Plot
NBA Player Efficiency by Position
Player efficiency ratings across basketball positions
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import ptitprince as pt
np.random.seed(104)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
COLORS = ['#C82909', '#F5B027', '#6CF527', '#27D3F5', '#5314E6']
positions = ['PG', 'SG', 'SF', 'PF', 'C']
data = pd.DataFrame({
'PER': np.concatenate([
np.random.normal(18, 5, 60),
np.random.normal(16, 4.5, 65),
np.random.normal(17, 5, 55),
np.random.normal(19, 5.5, 50),
np.random.normal(20, 6, 45)
]),
'Position': ['PG']*60 + ['SG']*65 + ['SF']*55 + ['PF']*50 + ['C']*45
})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
pt.RainCloud(x='Position', y='PER', data=data, palette=COLORS,
bw=.2, width_viol=.6, ax=ax, orient='h', alpha=.65,
dodge=True, pointplot=False, move=.2)
ax.set_xlabel('Player Efficiency Rating', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Position', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('NBA Player Efficiency by Position', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Raincloud Plot examples
☕