Raincloud Plot

Neural Network Architecture Loss Raincloud

Comparing final training loss distributions across different neural network architectures.

Output
Neural Network Architecture Loss Raincloud
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

np.random.seed(123)

# Final training loss
cnn = np.random.lognormal(-2.5, 0.4, 100)
transformer = np.random.lognormal(-3.2, 0.35, 100)
lstm = np.random.lognormal(-2.8, 0.45, 100)
mlp = np.random.lognormal(-2.0, 0.5, 100)

cnn = np.clip(cnn, 0.01, 0.3)
transformer = np.clip(transformer, 0.005, 0.15)
lstm = np.clip(lstm, 0.01, 0.25)
mlp = np.clip(mlp, 0.02, 0.5)

F_stat, p_value = stats.f_oneway(cnn, transformer, lstm, mlp)

BG_COLOR = "#0d1117"
COLOR_SCALE = ["#F5B027", "#6CF527", "#27D3F5", "#F5276C"]

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

y_data = [cnn, transformer, lstm, mlp]
positions = [0, 1, 2, 3]
labels = ["CNN", "Transformer", "LSTM", "MLP"]

for h in [0.05, 0.1, 0.15, 0.2]:
    ax.axhline(h, color='#333333', ls=(0, (5, 5)), alpha=0.6, zorder=0)

violins = ax.violinplot(y_data, positions=positions, widths=0.5, 
                         bw_method="silverman", showmeans=False, 
                         showmedians=False, showextrema=False)
for pc in violins["bodies"]:
    pc.set_facecolor("none")
    pc.set_edgecolor("white")
    pc.set_linewidth(1.8)

bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
                medianprops=dict(linewidth=3, color='#F5D327'),
                whiskerprops=dict(linewidth=2, color='#666666'),
                boxprops=dict(linewidth=2, color='#666666'))

for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
    x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
    ax.scatter(x_jitter, y, s=50, color=color, alpha=0.5, zorder=2)

means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
    ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
    ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color="white", zorder=3, lw=1.5)
    ax.text(i + 0.3, mean, f"μ={mean:.3f}", fontsize=10, va="center", color='white',
            bbox=dict(facecolor=BG_COLOR, edgecolor=color, boxstyle="round,pad=0.15", lw=2))

# Best model bracket
ax.annotate('', xy=(1, transformer.mean()-0.01), xytext=(1, 0.005),
            arrowprops=dict(arrowstyle='->', color='#6CF527', lw=2))
ax.text(1, 0.002, "Best", ha='center', color='#6CF527', fontsize=10, fontweight='bold')

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_color('#444444')
ax.spines["bottom"].set_color('#444444')
ax.tick_params(colors='#888888', length=0)

xlabels = [f"{l}\n(n={len(y_data[i])})" for i, l in enumerate(labels)]
ax.set_xticks(positions)
ax.set_xticklabels(xlabels, size=12, color='white')
ax.set_ylabel("Final Loss (Cross-Entropy)", size=14, color='white', fontweight='bold')

ax.set_title("Neural Network Architecture Comparison", fontsize=14, color="white", fontweight="bold", pad=20)


ax.set_ylim(-0.01, 0.35)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support