3D Scatter
Neural Network Embeddings (t-SNE)
3D t-SNE visualization of neural network activation embeddings showing class separation.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(321)
# Simulate t-SNE of neural network activations
n_samples = 300
# Create 5 class clusters in 3D embedding space
classes = 5
colors = ['#06b6d4', '#ec4899', '#22c55e', '#f59e0b', '#a78bfa']
all_x, all_y, all_z, all_c = [], [], [], []
for i in range(classes):
angle = i * 2 * np.pi / classes
cx = 3 * np.cos(angle)
cy = 3 * np.sin(angle)
cz = np.random.uniform(-1, 1)
n = n_samples // classes
x = np.random.normal(cx, 0.5, n)
y = np.random.normal(cy, 0.5, n)
z = np.random.normal(cz, 0.5, n)
all_x.extend(x)
all_y.extend(y)
all_z.extend(z)
all_c.extend([colors[i]] * n)
fig = plt.figure(figsize=(10, 8), facecolor='#0a0a0f')
ax = fig.add_subplot(111, projection='3d', facecolor='#0a0a0f')
ax.scatter(all_x, all_y, all_z, c=all_c, s=25, alpha=0.7, edgecolors='none')
ax.set_xlabel('Dim 1', color='white', fontsize=10)
ax.set_ylabel('Dim 2', color='white', fontsize=10)
ax.set_zlabel('Dim 3', color='white', fontsize=10)
ax.set_title('Neural Network Embeddings (t-SNE)', color='white', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#64748b', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#1e293b')
ax.yaxis.pane.set_edgecolor('#1e293b')
ax.zaxis.pane.set_edgecolor('#1e293b')
ax.view_init(elev=25, azim=45)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
3D Charts
☕